Exercise 54

Find the absolute maximum and absolute minimum values of f on the given interval.

$$
f(x)=\frac{x}{x^{2}-x+1}, \quad[0,3]
$$

Solution

Take the derivative of the function.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(\frac{x}{x^{2}-x+1}\right) \\
& =\frac{\left[\frac{d}{d x}(x)\right]\left(x^{2}-x+1\right)-\left[\frac{d}{d x}\left(x^{2}-x+1\right)\right] x}{\left(x^{2}-x+1\right)^{2}} \\
& =\frac{(1)\left(x^{2}-x+1\right)-(2 x-1) x}{\left(x^{2}-x+1\right)^{2}} \\
& =\frac{1-x^{2}}{\left(x^{2}-x+1\right)^{2}}
\end{aligned}
$$

Set what's in the numerator equal to zero, and set what's in the denominator equal to zero. Solve both equations for x.

$$
\begin{array}{rr}
1-x^{2}=0 & \left(x^{2}-x+1\right)^{2}=0 \\
x^{2}=1 & x^{2}-x+1=0 \\
x=-1 & \text { or } \quad x=1 \\
x=-1 & \text { or } \quad x=1
\end{array}
$$

The real numbers, $x=-1$ and $x=1$, are the critical numbers. Only $x=1$ is within $[0,3]$, so evaluate f here.

$$
\begin{equation*}
f(1)=\frac{1}{1^{2}-1+1}=1 \tag{absolutemaximum}
\end{equation*}
$$

Now evaluate the function at the endpoints of the interval.

$$
\begin{aligned}
& f(0)=\frac{0}{0^{2}-0+1}=0 \\
& f(3)=\frac{3}{3^{2}-3+1}=\frac{3}{7}
\end{aligned}
$$

The smallest and largest of these numbers are the absolute minimum and maximum, respectively, over the interval $[0,3]$.

The graph of the function below illustrates these results.

